DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular & Supplementary Summer Examination - 2024

Course: B. Tech. Semester: IV

Branch: Electrical and Power/Electrical & Electronics Engineering/Electrical

Engineering

Subject Code & Name: Network Theory (BTEEC401)

Max Marks: 60 Date: 12/06/2024 Duration: 3 Hr.

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

(Level/CO) Marks

Q. 1 Solve Any Two of the following.

A) Find an equivalent resistance between A and B in the network of Figure. Understanding

B) Replace the circuit between A and B in Figure with a voltage source in series with a single resistor.

Remembering

6

12

6

C) State and Explain classification of Elements with their examples.

Understanding

6

Q.2 Solve Any Two of the following.

A) State and Explain Maximum Power Transfer Theorem.

Remembering

12 6

6

B) Determine Thevenin's equivalent network.

Understanding

-

C) Find the current through the 10Ω resistor by using superposition theorem. Remembering

Q. 3 Solve Any Two of the following.

Remembering

A) Obtain transient response of driven R-C series circuit.

Write down the tieset matrix and incidence matrix.

Kemembering

12

6

6

6

Remembering

C) In the network of Figure, the switch is closed at t = 0. With the capacitor Understanding uncharged, find value for i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at t = 0+.

Q.4 Solve Any Two of the following.

12

6

6

6

6

A) In the network of Figure, the switch is moved from the position 1 to 2 at t = 0, steady-state condition having been established in the position 1. Determine i(t) for t > 0 using Laplace Transform.

Understanding

 $\begin{array}{c|c}
 & 10 \\
 & 20 \\
 & 10
\end{array}$ $\begin{array}{c|c}
 & 10 \\
 & 10
\end{array}$

B) Find Y-parameters of the network shown in Figure.

Understanding

C) What is the physical significance of Pole and Zero in a Transfer Function? Remembering 6

Q. 5 Solve Any Two of the following.

A) Explain High pass filter and band pass filter.

Understanding

Remembering 6

B) What is meant by resonance in series RLC circuit? Derive equation for resonant frequency.

C) A series RLC circuit has the following parameter values: R=10~W, L=0.01~H, C=100~mF. Compute the resonant frequency, bandwidth, and lower and upper frequencies of the band width.

Understanding

*** End ***